Generating Lissajous Figures
using GAN

.
4
v
A .
5 ..
2 ’ h
> 5

Duccio Meconcelli

Summary

The goal of this project is to create a GAN that is capable of generating Lissajous figures.
Generating Lissajous figures is not a straightforward task due to their great variability.

In this study, a significant challenge was quantifying the quality of the generated Lissajous figures. Unlikea classification problem, where
the network can be evaluated based on its accuracy in categorizing the data, it is much more difficultfo obtain precise metrics for the

evaluation of generated figures.
To overcome this challenge, we used a combination of qualitative and quantitative methods to‘assess the quality of the generated figures,
including visual comparison and mathematical analysis of the generated figures.

We also experimented with different parameters and architectures of the GAN in grder to improve the quality of the generated figures.
This allowed us to gain insights into the optimal parameters and architectures for'generating Lissajous figures using GANs.

At the end, despite the challenges in comparing and analyzing GANSs, the ést model according to the metrics and comparing images
between various models at a glance was the one from Experiment 22.

While the quality of the images produced is not the best, we can still see some shapes, but far from the harmony and geometry of the
Lissajous figures.

LINKS

Github Repo
Report
Dataset

Experiment

https://github.com/Duccioo/TwistedThoughtGAN
https://duccioo.github.io/TwistedThoughtGAN/TwistedThoughtGAN_report_v2.pdf
https://drive.google.com/drive/folders/1WtfWxq7GHd4kZtoEF4L3SIb9cJG9tKSh?usp=sharing
https://drive.google.com/drive/folders/1DJCiMandXZLarLryAF4HndFEh1Nhe-Es?usp=sharing

.., line_width):

in range(n_ii
if n_pend == Non
npend = r.ra

) for i1 in range(npend)]
) for item in range(npend)]

Lissajous figures are graphical representations of the superposition of two harmonic waves.

To create the Lissajous figures dataset, we started from harmonograph. py inspired by a Github'Repo. »
The creation of the images was made usmgthe overlapping of multiple pendulums from 2 to #{from empirical il ey ! N 'r‘}; Ig; b
experiments the number of pendulums 2 - 4 make it possible to create 'prettier' images). .~ S . :

We created the dataset to a total of 20°'000 images 128 x 128 pixels.

Unsuitable images were removed to ensure a balanced distribution of Lissajous figures.

(It was seen that with the number of pendulums at 2 too many circular figures were created, so it was decided to
distort the frequency a bit)

in(t * fx[1] + px[i]))
in(t * fy[i] + py[i]))

oo Ondata_loader.py theimageswere then normalized i dinensionkAnyadp L)y
between -1 and 1 and with a 50% probability, they were
horizontally mirrored. This was done to increase the
variability of the input data and to make the network more
transforms. ‘ robust to changes in the orientation of the figures. The order
transforms.Ne e(mean=[0.5], std=[0.51]), of the images in the dataset was randomized to ensure that
AL the network was not biased towards any specific type of
Lissajous figure. This allowed us to train the network on a
diverse set of Lissajous figures and to generate new, diverse
figures using the network.

import torchvision.transforms as transforms

transform = transforms.Comy

[

https://github.com/tuxar-uk/Harmonumpyplot

Experiments

class TrainPa

def inti

The experiments were carried out in order to meet the goal of improving upona b
DCGAN network (CLEAN' in the report) con5|st|ng for the Generator 1 Linearlayerand4

Linear layer; no gradient penalty, a Iearnlng rate of 0.0002 for both the generator and the
discriminator over 100 epochs with a seed set to 42 for reproducibility.

The approach taken involved experimenting with different network architecture
modifications:

e adding layers for both generator and discriminator (adding more complexity produces
more complex results)

e changing the type of the Generator Layers (Upsample with Convolutional 2D Layers or
Convolutional 2D Transpose Layers)

e changing the loss function between BCE or Wasserstein Loss

e altering the learning rate for both the generator and the discriminator

e implementing or removing the gradient penalty

e modifying the batch size

e adjusting the relative training time for the discriminator compared to the generator
(Increase or decrease the number of steps so that the network updates the generator
parameters (disc_steps in the code) Clasge;“““ﬁw

We conducted 22 experiments by modifying this parameters.

*xkwargs):

e = True

a" if torch.cuda. le() else "cpu"
OUTPUT"

The Generator Model

class Gener

nn.Conv2

, stride=2, padding=1)

stride=1, padding=1)

While the network architecture varied during the
experiments, the implementation is more or less
always the same.

The basic model of the Network was chosen inspired
by a DCGAN: by placing side by side
convolutional/convolutional layers transposed to
batch norm layers, and LeakyReLU activations.

Onmodel. py inthe first part, when we create the
Generator object (subclass of Pytorch Module), we
instantiate the layer modules that will be used by the
network, for example: in this case, ConvTranspose2d
layers are instantiated for the generator if the opfion

transpose and non-transpose layers.

During the forwarding step, the shodules
instantiated inthe __initit are used to

calculate the network output given a certain input.

During the 20 experiments were made

changes both to the quantity of the layers and to the
parameters (for example the number of ctitput
channels of a convolutional laver).

N.B.: during the Torward() method we need a
view() toswitch froma 1D to a 2D representation
in fact the generator takes as input a 1D Tensor (the
noise) of magnitude 100.

x = torch.
return x

Eelise:

return x

The Discriminator Model

o000
class Discriminator_128(nn.Module):
def init__(self, spectral_norm=False, n_conv=5):

super(Discriminator_128, self).__init__()
self.sn = spectral_norm

g , kernel_size=3, stride=1, padding=1)

3 , kernel_size=4, stride=2, padding=1)

5 , kernel_size=3, stride=1, padding=1)
5 , kernel_size=4, stride=2, padding=1)
, kernel_size=3, stride=1, padding=1)
kernel_size=4, stride=2, padding=1)
kernel_size=4, stride=2, padding=1)
kernel_size=3, stride=1, padding=1)
kernel_size=4, stride=2, padding=1)

kernel_size=35——<tride=1, padding=1)

else:

sn_fn = torch.nn.utils.spe

self.convl = sn_fn(torch.nn.Conv2 , stride=1, padding=(1, 1)))

fc = sn_fn(torch.nn.Linea 5 A)))

The discriminator, similarly to the generator, is composed of a

onstructor where the modules to be utilized are defined,
followed by a forward method that applies these PyTorch
modules to determine whether an image is real or generated.
In each experiment, the number of layers and various options
(such as the number of channels, kernel size, etc.) were slightly
altered.

The structure of the model from experiment 22 is displayed,
consisting of 10 convolutional layers and 1 linear layer.

(It is worth-mertioning that the spectral normalization was
o implemented but was not taken into consideration during
the main experiments due to time constraints)

def forward(self, x):
if self.sn == False:

X
nn +

X X X X = x
nwonn wnn nwonn o n nwnn nonon

SIS ISR 5
L T | I [1

x
L0

x = torch.
return x
else:

3
Inn
5

def main():

model_params = ModelParams()
parser = argparse./ entParser(description=__doc__)

e", type=str, help tart training",
ut", type=str, help= directory",

model_params.ger

print("unknown img_dim:", args.
exit()

*train®:

= Data_L(data_folder=os.path. (Bseriptisnsinputs Nstr(

train_p inParams(

aset.tra

Training Procedure 1

The script start inthe main. py file where after an initialization of the model
parameter (default parameters like: output dir, img dim., etc...)and the creation of all
the command options check if you want to train the model.

Subsequently the models of the generator and of the discriminator are instantiated,
first checking the type of image supported (in this case 128x128) and specifying if the
instances of the models are requested with any particular meaning.

Example: Generator accepts the 'transpose' argument to indicate if you want the
layers to be Conv2d Transpose instead of Upsumple + Conv2d.

Then instantiate aData_L object that is a wrapping class for manage the dataset.
The class automatically splits the dataset into 80%, 10% and 10% (however, it is
possible to set different percentages).

Then initialize all the train parameters (batch size, learning rate, etc...) with a specific
object train_params and with the method .save_params() | save the
parameters in a .json file on the cutput directory.

Finally we start the training procedure with its own function defined in another file.
The function accepts 2 'Dataloader’ types which are used to manage the dataset 1
for the Training Set and the other for the Validation Set, taking the appropriate images
for each batch size, then we give, the instance of generator and discriminator, the
parameters of the training (params), the output directory (out_dir) and the device
to compute the training.

o0

(out_dir, "checkpoint")

y >Gad_from_checkpoint()

Training Procedure 2

Inthe train.py function, the training process is carried out as follows:

1) First, the Generator and Discriminator are set to training mode and passed to a specific device
(CPU or GPU).

2) The optimizer is set, with Adam used for the Generator and Stochastic Gradient Descent for the
Discriminator.

3) The checkpoint is loaded, if present.

4) The model architecture is saved in a .json file in the output folder.

5) The training loop is initiated, cycling through the entire dataset params . epoch times, as defined
by the number of epochs in the TrainParams object. For each epoch, the loop cycles through the
batches of datafromthe train_dataloader.

Training the Discriminator:
- For each batch, noise of equal size is generated and input into the generator. The generator's
forward method returns a tensor (of batch size, 1 channel, 128 pixels, 128 pixels).
- The tensor returned by the generator and the original images are used to calculate the
discriminator's loss.

Compute the gradient.
- The discriminator's weights are finally updated.

Every so often (every multiple of .disc_steps), the Generator is trained:

- Noise is generated again and used to create a generated image, which is then input into the
Discriminator to obtain the Generator's loss.

- The Generator's weights are finally updated.

Every so often (every multiple of . steps_per_val), the model is evaluated.

Finally, the 1og () function s called to: save checkpoints, save any validation data, update the data
displayed in the command line, and clean up any old checkpoints to optimize disk space.

Loss

Different types of loss can be used in the script, but during
the experiments the 'standard' was mainly chosen (i.e. a
slight change of the BCE: in GAN papers, the loss function to
optimize G is min (log 1-D) accordance with the objective
presented in the original paper, but in practice use max (log
D) or min -(logD) because the first formulation, which is the
'js'type in the code, has vanishing gradients problem).

BCE Loss:

- D Loss = maximize the probability of the discriminator D correctly classifies real image and the

Gradient Penalty: If enable, it modifies the

e L s : Discriminator loss by a factor calculated using the
gradient of the interpolation between true and
false images

mples
(True)
discrimin

iz = . def generator s(discriminator, fake, loss_type):
ient_penal () if loss_type
R Epeaiy return -(torch.log(discriminator(fake))). 1()

elif loss_type ==

return (torch.l - discriminator(fake))).mean()

elif loss_type "wasserstein" or loss_type == "hinge":
return -(d riminator(fake)).mean()

discriminator_loss(discriminator, real, fake, params, device="cpu"):

probability of the discriminator correctly classifying the generated image G(z). loss =

if params.loss standard" or params. = "js":
loss = (

-G loss = is defined as the negative expectation of the log probability of the discriminator, D, classifying e reilog(diseiminator(reaty ineanc)

the generated image G(z) as real.

Wasserstein Loss:
(from the algorithm in the paper)

-D Loss = - (average D score on real images) + (average D score on fake images)

-G Loss = -(average D score on fake images)

- (torch.1 }(- discriminator(fake))).mean()

)

elif params.loss ein":
I _validity discriminator(real).
f _validity discriminator(fake).
loss = -real_validity + fake_validity

return loss

https://arxiv.org/pdf/1701.07875.pdf
https://papers.nips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf

Evaluation

', keep_training=True):

In order to evaluate the performance of the GAN, several metrics were
used.

For the generator:

- the Structural Similarity Index (SSIM),

- Peak Signal-to-Noise Ratio (PSNR),

- Sliced Wasserstein Distance (SWD)

were used to quantify the similarity between the generated and real
Lissajous figures.

The implementations of SWD and SSIM were taken from Github
repositories.

return ps

For the PSNR we use the definition.

Then we take the mean of all batches.

(The metrics used for the discriminator (accuracy, f1-scrore, ...) were largely ignored as they provided
inconclusive results)

While these metrics provided quantitative evaluations of the
generated figures, the primary factor in determining the
success of the GAN was subjective human evaluation. _
The generated figures that were deemed to have the most

visually appealing and accurate Lissajous-like patterns were

selected.

The focus of the evaluation was on the ability of the generator

to produce visually convincing Lissajous figures.

Result

The results of our experiments show several key insights regarding the development of |
our Generative Adversarial Network (GAN) for generating Lissajous figures.

1. The use of upsample and conv2d (exp14) instead of conv2d transpose (exp’__‘
significantly reduced the quality of the generated images (exp14 vs exp17).

2. The introduction of a gradient penalty (exp9), although it increased the execution time,
had a positive effect on the final image quality (exp10 vs exp9). Lexete J

3. The results indicate that training the discriminator more heavily (exp16) t
generator leads to better quality images (using .disc_steps >1).(15vs 16).

4. Our results showed that there was no difference between using the Wa
and the Binary Cross Entropy (BCE) Loss.

5. The results obtained using metrics such as SSIM, SWD, and PSNR often contrasted
with human perception (exp2 best for SSIM vs exp22 the best at a glance).

— I

(A complete list of all the results is available in the report)

https://duccioo.github.io/TwistedThoughtGAN/TwistedThoughtGAN_report_v2.pdf

