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Abstract

Generative Adversarial Networks (GANs) are a type of deep learning neural network architecture used
for generative tasks, such as creating new images, music, or text. Lissajous figures are parametric curves that
are commonly used in physics and engineering to represent simple harmonic motion. The goal of this study
was to use a GAN to generate Lissajous figures. However, this task was challenging due to the oscillatory
nature of GANs. Despite various attempts to modify the parameters and layers of the network, the results
obtained were not satisfactory. The best-performing network still struggled to accurately imitate Lissajous
figures. This highlights the difficulties in using GANs for generating complex patterns.
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1 Introduction

Lissajous figures are graphical representations of the superposition of two simple harmonic waves. They are
defined by equations that describe the x and y coordinates as a function of time. The appearance of the figures
can be controlled by changing the frequency, phase, and amplitude of the two waves [3].
Generative Adversarial Networks (GANs) are deep neural networks designed for generative tasks. They consist
of two main components: a generator and a discriminator [1]. The generator is trained to produce synthetic
data that is similar to the training data, while the discriminator is trained to distinguish between the generated
data and the real training data. The generator and discriminator are trained in an adversarial manner, with the
generator attempting to produce data that can fool the discriminator, and the discriminator trying to correctly
identify the source of the data.
The goal of this project is to create a GAN that is capable of generating Lissajous figures. This involves training
the generator to produce synthetic Lissajous figures that are similar to real Lissajous figures, and training the
discriminator to distinguish between real and synthetic Lissajous figures.
Generating Lissajous figures is not a straightforward task due to their great variability. In this study, a signif-
icant challenge was quantifying the quality of the generated Lissajous figures. Unlike a classification problem,
where the network can be evaluated based on its accuracy in categorizing the data, it is much more difficult
to obtain precise metrics for the evaluation of generated figures. To overcome this challenge, we used a combi-
nation of qualitative and quantitative methods to assess the quality of the generated figures, including visual
comparison and mathematical analysis of the generated figures.
In this study, we also experimented with different parameters and architectures of the GAN in order to im-
prove the quality of the generated figures. This allowed us to gain insights into the optimal parameters and
architectures for generating Lissajous figures using GANs.

Additionally, we used a specialized dataset of Lissajous figures to train the network, allowing us to control
for the variability of the input data and to better understand the impact of the network’s parameters on the
quality of the generated figures.

Figure 1: The most common Lissajous figures, from Wikipedia [3]
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2 Dataset

2.1 Create Lissajous Figures

To create the Lissajous figures dataset for this study, we started from a Python script obtained from Github
[5]. The creation of the images was made using the overlapping of multiple pendulums from 2 to 4 following
two functions:

x =

4∑
i=2

d · (αi · sin (t · fxi + pxi ))

y =

4∑
i=2

d · (αi · sin (t · fyi + pyi ))

Where i varies from 2 to 4 and represents the pendulums while d, α, fxi and pxi are randomly generated
factors like phase and amplitude of the pendulums.

2.2 Size

Initially, the dataset consisted of 15’000 total images, but after preliminary experiments, it became evident that
the dataset was heavily biased towards circular figures that covered the majority of the image (2).

To address this issue, we recreated the dataset to a total of 20’000 images, both 128 x 128 pixels and 256
x 256 pixels. This was accomplished by removing unsuitable images and selecting the best images to ensure a
balanced distribution of Lissajous figures. Moreover, by using a larger dataset of 20’000 images, we were able to
better train the network and to generate more accurate and detailed figures. This was particularly important
because the complexity of Lissajous figures can vary widely, and a larger dataset allowed us to capture this
variability.

(a) 15’000 dataset (b) 20’000 dataset

Figure 2: Differences between 15’000 dataset (a) and 20’000 dataset (b)

2.3 The DPI

Another factor to consider when generating the images for the dataset was the dpi (dots per inch). A high dpi
can darken the image too much, while a low dpi can make it too light and nearly invisible (3). After several
tests during the reconstruction of the dataset after the preliminary trials, a dpi of 50 was chosen for the 128
x 128 images and a dpi of 40 was chosen for the 256 x 256 images. This helped to strike a balance between
image clarity and visibility, which was crucial for training the network accurately and generating high-quality
Lissajous figures.

2.4 Transformation and Splitting

80% of the dataset was allocated for training, 10% for testing, and the remaining 10% for validation. The
images were then normalized between -1 and 1 and with a 50% probability, they were horizontally mirrored.
This was done to increase the variability of the input data and to make the network more robust to changes in
the orientation of the figures.

The order of the images in the dataset was randomized to ensure that the network was not biased towards
any specific type of Lissajous figure. This allowed us to train the network on a diverse set of Lissajous figures
and to generate new, diverse figures using the network.

In conclusion, the creation of a specialized dataset of Lissajous figures, combined with normalization and
data augmentation, allowed us to control for the variability of the input data and to better understand the
impact of the network’s parameters on the quality of the generated figures.
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(a) 10 DPI (b) 60 DPI

Figure 3: Differences between 10 DPI (a) and 60 DPI (b)

Additionally, it is important to note that the final dataset was diverse in terms of both the type of Lissajous
figures and their orientation, including circular, elliptical, and more complex figures. This ensured that the
network was exposed to a variety of different figures and allowed us to test its ability to generate new, diverse
figures that were not included in the training set. The use of a specialized dataset of Lissajous figures allowed
us to better control for the variability of the input data and to better understand the impact of the network’s
parameters on the quality of the generated figures.

In conclusion, the creation of a specialized, diverse, and large dataset of Lissajous figures was an essential
step in training the GAN and achieving accurate and diverse results.
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3 Methods and Metrics

3.1 Equipment and starting point

The creation of the Neural Network was implemented using Python and the Pytorch library. As a starting code
we used the one present in the yandexre Github repo ([7]) , obviously the code was changed heavily and served
mostly as a starting point to set up the project and the environment. The dataset was taken using the code as
already discussed in Chapter 2. A home machine with an RTX 3060 graphics card was used to run the code and
later Google Colab was also used to run experiments in parallel. Most of the experiments will focus on 128x128
images, this is mainly due to the onerousness of carrying out repeated experiments with 256x256 images.

It is also true some experiments with images using the 256 x 256 pixel dataset will be carried out. The basic
model of the Network was chosen inspired by a DCGAN [11]: by placing side by side convolutional/convolutional
layers transposed to batch norm layers, and LeakyReLU activations.

3.2 Metrics

In order to evaluate the performance of the GAN, several metrics were used. For the generator, the Structural
Similarity Index (SSIM), Peak Signal-to-Noise Ratio (PSNR), and Sliced Wasserstein Distance (SWD) were
used to quantify the similarity between the generated and real Lissajous figures.

3.2.1 Generator Metrics

1. The structural similarity index (SSIM) is a widely used quality index for evaluating the similarity between
two images.

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
(1)

where x and y are the two images being compared, µx and µy are the means of x and y, σ2
x and σ2

y are
the variances of x and y, and σxy is the covariance between x and y. The constants c1 and c2 are used
to stabilize the division with weak denominator. The implementation was taken by a Python Library [6]
Optimized to speed up calculations.

2. The peak signal-to-noise ratio (PSNR) is another common quality index for comparing two images. It
measures the average difference between the pixel values of the two images. It is defined as:

PSNR = 10 log10

(
1

MSE

)
(2)

where MSE is the mean squared error between the two images.

3. The sliced wasserstein distances (SWD) is a variation of the wasserstein distances, And it is another
widely used metric to compare the similarity between 2 images. The implementation was taken by a
Github Repository ([2])

3.2.2 Discriminator Metrics

For the discriminator, accuracy, recall, precision, and f1-score were used to measure the performance of the
discriminator in identifying real and generated Lissajous figures 1.

Accuracy measures the fraction of correctly classified instances, recall measures the fraction of positive
instances that were correctly identified, precision measures the fraction of positive predictions that were correct,
and F1-score is the harmonic mean of precision and recall. These metrics are defined as:

Accuracy =
True Positives+ True Negatives

Total Samples
(3)

Recall =
True Positives

True Positives+ False Negatives
(4)

Precision =
True Positives

True Positives+ False Positives
(5)

F1-score = 2× Precision×Recall

Precision+Recall
(6)

1The metrics used for the discriminator were largely ignored as they provided inconclusive results.
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3.2.3 Exception

Commonly used metrics for GAN evaluation, such as the Fréchet Inception Distance (FID) and Inception Score
(IS), were not applicable in this study. This is due to the fact that they are based on an implementation of
a neural network, Inception, that was created with 3 channels while the dataset used in this study consists of
single channel images. Despite efforts to adapt these metrics to the single channel case, the results were not
conclusive.

3.2.4 Human Evaluation

While these metrics provided quantitative evaluations of the generated figures, the primary factor in determining
the success of the GAN was subjective human evaluation. The generated figures that were deemed to have the
most visually appealing and accurate Lissajous-like patterns were selected.
The focus of the evaluation was on the ability of the generator to produce visually convincing Lissajous figures.

3.3 Methods

The first precautions were carried out before starting the actual experimentation. In fact, in the preliminary
phase, changes were made to the basic model of the DCGAN such as:

• modify the noise from a sampling of elements of a linear distribution to a superimposition of multiple
Gaussian distributions [4]

• use the dropout at each layer of the model Generator to increase the noise and make the model more
general as well as lighten the computation [4]

• use SGD for discriminator and ADAM for generator [4]

The experiments were carried out in order to meet the goal of improving upon a baseline DCGAN network
consisting for the generator 1 Linear layer and 4 layers of convolutional transpose, and for the discriminator
5 convolutional layer and 2 Linear layer, no gradient penalty, a learning rate of 0.0002 for both the generator
and the discriminator over 100 epochs with a seed set to 42 for reproducibility. The approach taken to achieve
this goal involved experimenting with different network architecture modifications suggested by various papers.
The changes include:

• adding layers for both the generator and the discriminator ( hypothesis: adding more complexity/Deeper
Layers produces more complex results )

• changing the type of the Generator Layers (Upsample with Convolutional 2D Layers or Convolutional 2D
Transpose Layers)

• changing the loss function between BCE (standard for GAN) or Wasserstein Loss ([10])

• altering the learning rate for both the generator and the discriminator

• implementing or removing the gradient penalty ([9])

• modifying the batch size

• adjusting the relative training time for the discriminator compared to the generator (Increase or decrease
the number of steps so that the network updates the generator parameters [4])

Each experiment was performed in a manner such that if after 100 epochs the modified network was unable to
produce images that were better than those generated by the baseline network, the experiment was discontinued.
However, if a network achieved improved results, it was selected as the new comparison network in place of the
baseline.

It should be noted that the oscillatory nature of GANs means that this approach may not always be reliable,
as it is possible for a modified network to improve significantly after 100 epochs but then perform worse than
the baseline network after further training. Despite this limitation, the described experimental process was
followed due to time constraints.
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4 Results

In this section, we present the results obtained from a series of experiments carried out on our Generative
Adversarial Network (GAN) designed to generate Lissajous figures. In order to optimize the performance of
the network we conducted 20 experiments by modifying various parameters such as network architecture, loss
function, learning rate, gradient penalty, batch size. These modifications were carried out with the goal of
improving the generated images compared to the original network architecture.
The following paragraphs will provide a detailed discussion of the findings from these experiments. The exper-
iments were performed using 128x128 images and were trained for 100 epochs. Table 1 shows the complete list
of all the architectures of the experiments. The order of the experiments may seem confusing but a parallel
approach was used to carry out the experiments so in order to optimize the times several experiments were
carried out simultaneously thus mixing the various changes made to each new result. The variation of the
learning rate did not lead to noteworthy results.

(a) CLEAN (b) experiment 0

Figure 4: Differences between the base DCGAN 9(a) and the first experiment(b)

The results of our experiments show several key insights regarding the development of our Generative
Adversarial Network (GAN) for generating Lissajous figures.

1. The use of upsample and conv2d instead of conv2d transpose significantly reduced the quality of the
generated images (Figure 5).

2. A reduction in batch size improved the training efficiency, however, it also increased the overall execution
time (banale spiegazione che la rete viene addestrata maggiormente) (Figure 6).

3. The introduction of a gradient penalty, although it increased the execution time, had a positive effect on
the final image quality (Figure 7).

4. The results indicate that training the discriminator more heavily than the generator leads to better quality
images. (Figure 8).

5. It is not always the case that increasing the depth of the generator produces better results (Figure 10).

6. Our results showed that there was no difference between using the Wasserstein Loss and the Binary Cross
Entropy (BCE) Loss (Figure 11).

- Mixed Result: adding additional convolutional layers to the discriminator led to more complex images,
with more intricate details but a deeper investigation is needed (Figure 9)

The results obtained from the experiments conducted on the GAN network aimed at creating Lissajous
figures showed a mixture of outcomes. Despite using well-established metrics such as SSIM, SWD, and PSNR
to evaluate the quality of the generated images, the results obtained often contrasted with human perception,
for example using the SSIM metric we should have chosen 2 as the best image Which is very far from resembling
a Lissajous figure. Instead, following the SWD metric and taking the model with the lowest value, we obtain
model 17 which is in any case a good compromise between all the possible experiments carried out (Figure 13).

This highlights the difficulty in comparing and analyzing GANs and underscores the need for further research
in this area as already discussed in some papers [8] [12]. Additionally, while adding layers to the discriminator
resulted in increased complexity, the resulting images were often similar to those with fewer layers, potentially
due to the wave-like nature of GANs. This further emphasizes the complexity of the GANs and the need for
more in-depth analysis to better understand the relationships between the different components of GANs and
the resulting images.

Additionally, 3/4 experiments were also tried with 256x256 images, but as the size of the network was scaled
to increase the depth of the layers, the calculation time required for the test phase increased exponentially,
making it prohibitive to perform these tests at this moment. Having said that, it should however be noted that
the difference between 256-0 and 256-1 of the architecture has led to an increase in complexity in the final image
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all the same (Figure 12). This is further confirmation of the fact that increasing the depth of the discriminator
affects the creation of more complex geometries even if this does not translate directly into an image more
similar to those of the dataset.

(a) experiment 14 with Upsample + conv2d (b) experiment 17 Conv2d Transpose

Figure 5: Upsample and Convolution Layer (a) VS Convolution Trasnpose Layer (b)

Note: It should be noted that each experiment lasted between 2/2:30 hours using the GPU and therefore
on about 22 experiments it was necessary to use several computers in parallel, this was possible thanks to the
use of several sessions on google colab and in parallel also the use of the home computer.

Our experiments have shown that, despite the challenges in comparing and analyzing GANs, the best model
according to the metrics described in Chapter 3 and comparing images between various models at a glance was
the one from Experiment 22 (Figure 14). While the quality of the images produced is not the best, we can still
see some shapes, but far from the harmony and geometry of the Lissajous figures. The results obtained from
the test phase of Experiment 22 showed lower SSIM, PSNR, and higher SWD values compared to the validation
phase. This supports the argument that these metrics have limited ability to judge the overall quality of a
model in terms of visual appeal. Despite this, the quality of the images generated by the Experiment 22 model
is still relatively good and some form can still be seen, even if it falls short of the harmony and geometry of
Lissajous figures.
However, it should be noted that all the tests were carried out over 100 epochs, which is a relatively small
number compared to the standard of GANs, and this could be one of the reasons why the images are not very
good.

(a) experiment 7 with 80 batch size (b) experiment 6 with 50 batch size

Figure 6: Batch Size differences
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(a) experiment 10 with 0 gradient penalty (b) experiment 9 with 2 gradient penalty

Figure 7: Gradient Penalty Differences

(a) experiment 15 with Disc. Step 2 (b) experiment 16 with Disc. Step 4

Figure 8

(a) experiment 1 with 6 Conv2d (b) experiment 21 with 10 Conv2d

Figure 9: Discriminator (a) with less layer and (b) with more layer

(a) experiment 15 with 5 Conv2d Transpose (b) experiment 18 with 4 Conv2d Transpose

Figure 10: Generator (a) with more layer and (b) with less layer

(a) experiment 20 with Wasserstein Loss (b) experiment 18 with BCE loss

Figure 11: No notable difference between the two Loss

(a) experiment 256-0 with 5Conv2d+2Lin (b) experiment 256-1 with 7Conv2d+2Lin

Figure 12: Differences between 2 256x256 pixel images with different architecture
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(a) experiment 2 (b) experiment 17

(c) experiment 15

Figure 13: (a) best for SSIM, (b) best for SWD, (c) best for PSNR

Number batch size Layer Disc. Layer Gen Disc. Step Penalty Loss

CLEAN 100 5Conv2d+2Lin 1Lin+4ConvTrans2d 1 0 BCE
0 80 6Conv2d+2Lin 1Lin+4ConvTrans2d 3 1.5 BCE
1 80 6Conv2d+2Lin 1Lin+4ConvTrans2d 2 1.5 BCE
2 100 6Conv2d+2Lin 1Lin+4Conv2d+4Upsample 2 1.5 BCE
3 100 6Conv2d+2Lin 1Lin+4Conv2d+4Upsample 2 1.5 BCE
4 100 6Conv2d+2Lin 1Lin+4Conv2d+4Upsample 2 1.5 BCE
5 100 5Conv2d+2Lin 1Lin+4ConvTrans2d 2 0 BCE
6 50 5Conv2d+2Lin 1Lin+4ConvTrans2d 2 1.5 BCE
7 80 5Conv2d+2Lin 1Lin+4ConvTrans2d 3 1.5 BCE
8 80 6Conv2d+2Lin 1Lin+4ConvTrans2d 3 1.6 BCE
9 64 5Conv2d+2Lin 1Lin+4ConvTrans2d 2 2.0 BCE
10 64 5Conv2d+2Lin 1Lin+4ConvTrans2d 2 0 BCE
11 80 7Conv2d+2Lin 1Lin+5ConvTrans2d 2 1.6 BCE
12 80 7Conv2d+2Lin 1Lin+4ConvTrans2d 2 1.5 BCE
13 80 8Conv2d+2Lin 1Lin+5ConvTrans2d 3 1.75 BCE
14 80 8Conv2d+2Lin 1Lin+4Upsample+4Conv2d 4 1.75 BCE
15 80 8Conv2d+2Lin 1Lin+5ConvTrans2d 2 1.7 BCE
16 80 8Conv2d+2Lin 1Lin+5ConvTrans2d 4 1.75 BCE
17 80 8Conv2d+2Lin 1Lin+4ConvTrans2d 4 1.6 BCE
18 80 8Conv2d+2Lin 1Lin+4ConvTrans2d 2 1 BCE
19 80 8Conv2d+1Lin 1Lin+4ConvTrans2d 1 1.7 WASS
20 80 8Conv2d+1Lin 1Lin+4ConvTrans2d 2 1.5 WASS
21 80 10Conv2d+1Lin 1Lin+4ConvTrans2d 2 1.5 BCE
22 80 10Conv2d+1Lin 1Lin+4ConvTrans2d 4 1.5 BCE

256-0 80 5Conv2d+2Lin 1Lin+3ConvTrans2d 3 1.7 BCE
256-1 86 7Conv2d+2Lin 1Lin+3ConvTrans2d 3 1.7 BCE

Table 1: a view of all the architectures used in the experiments, note that ”WASS” stand for Wasserstein Loss
function, ”Disc. Step” for Number of iteration (step) of Discriminator before train the Generator, ”Penalty” is
for Gradient Penalty
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Figure 14: 3 images from the ”Best Model”

Number Loss D Loss G SSIM PSNR SWD Accuracy Precision Recall F1-score

CLEAN - - - - - - - - -
0 - - - - - - - - -
1 0.4465 1.6653 0.129 8.39 - 0.49 0.25 0.49 0.33
2 0.13 6.56 0.35 6.36 - 0.5 0.25 0.5 0.33
3 0.12 7.7 0.02 1.43 - 0.5 0.25 0.5 0.33
4 nan 0 0.26 7.42 1096.63 0.5 0.25 0.5 0.33
5 1.43 0.68 0.15 7.44 767.75 0.5 0.25 0.5 0.33
6 0.21 2.87 0.2 8.42 770.87 0.5 0.25 0.5 0.33
7 0.48 2.13 0.16 8.62 960.23 0.5 0.25 0.5 0.33
8 0.23 2.21 0.2 8.59 870.64 0.5 0.25 0.5 0.33
9 0.41 2.3 0.14 8.31 806.32 0.5 0.25 0.5 0.33
10 very low very low very low very low very low 0 0 0 0
11 0.05 4.21 0.13 7.98 922.01 0.5 0.25 0.5 0.33
12 0.11 3.25 0.15 8.32 840.07 0.5 0.25 0.5 0.33
13 0.31 1.87 0.18 8.64 879.62 0.5 0.25 0.5 0.33
14 0.02 6.44 0.34 7.92 1207.93 0.5 0.25 0.5 0.33
15 0.38 1.33 0.14 8.65 889.09 0.5 0.25 0.5 0.33
16 0.29 1.56 0.19 8.33 702.76 0.5 0.25 0.5 0.33
17 0.19 1.94 0.2 8.05 637.77 0.5 0.25 0.5 0.33
18 0.23 2.87 0.18 8.33 748.62 0.5 0.25 0.5 0.33
19 0.01 -1 0.01 5.32 2740.26 0.5 0.25 0.5 0.33
20 -0.77 -0.22 0.19 8.25 689.49 0.5 0.25 0.5 0.33
21 0.19 1.95 0.2 8.23 668.57 0.5 0.25 0.5 0.33
22 0.18 2.44 0.2 8.28 664.37 0.5 0.25 0.5 0.33

Table 2: All the data related to the experiments in general SSIM and PSNR The higher the better and for
SWD lower is better, some indexes are missing due to my mistake...
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5 Conclusion

In this final chapter, we summarize the main findings of our research on the behavior of Generative Adversarial
Networks. Through a series of experiments, we aimed to understand the impact of different hyperparameters
on the performance of GANs. The results of these experiments provide insight into the workings of GANs and
highlight the trade-offs between performance and computational complexity.

This report has presented a study on the behavior of Generative Adversarial Networks (GANs) under dif-
ferent parameters and configurations. Through the course of 22 experiments, we have investigated the impact
of batch size, number of layers in both generator and discriminator, upsampling method, loss functions, and
gradient penalties on the quality of generated images. Our results have shown that modifying the gradient
penalty and the number of iteration in the discriminator have had a significant impact on the quality of the
images. However, it is also worth noting that the best network using metrics such as SSIM, SWD, and PSNR
does not necessarily correspond to the network with the best images according to human evaluation.

Furthermore, our findings have revealed that adding layers to the generator does not necessarily lead to an
improvement in image quality, and that there is no clear difference between using the Wasserstein Loss and
the BCE loss. It is also worth mentioning that the results obtained by adding layers to the discriminator were
inconsistent, as although an increase in complexity was evident, the resulting images were often similar to those
generated with fewer layers. This might be due to the wave-like nature of GANs.

In conclusion, while the results of this study may not be the best, this project has allowed us to delve into
the concept of neural networks and, more specifically, Generative Adversarial Networks (GANs), gaining a
deeper understanding of their functioning and their pros and cons. Through experimentation with various pa-
rameters such as batch size, number of layers in the generator and discriminator, and different loss functions,
we have seen both the strengths and limitations of GANs. While the results may not be perfect, this project
has provided valuable insight into the nature of GANs and the potential they hold. However, it is important
to acknowledge that the field of GANs is still in its infancy, and there is much to be discovered about these
networks. We hope that this work will encourage further exploration of this exciting and rapidly growing area.
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